Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.451
Filtrar
1.
Food Res Int ; 184: 114215, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609213

RESUMO

The production of whole-liquid eggs is of significant economic and nutritional importance. This study aimed to assess the phenotypic and genotypic diversity of mesophilic aerobic spore-forming bacteria (n = 200) isolated from pasteurized whole liquid egg and liquid egg yolk. The majority of the isolates were identified as belonging to the genera Bacillus (86 %), followed by Brevibacillus (10 %) and Lysinibacillus (4 %). For the phenotypic characterization, isolates were subjected to various heat shocks, with the most significant reductions observed at 80 °C/30 min and 90 °C/10 min for isolates recovered from raw materials. On the other hand, the decrease was similar for isolates recovered from raw material and final product at 100 °C/5 min and 110 °C/5 min. Genotypic genes related to heat resistance (cdnL, spoVAD, dacB, clpC, dnaK, and yitF/Tn1546) were examined for genotypic characterization. The dnaK gene showed a positive correlation with the highest thermal condition tested (110 °C/5 min), while 100 °C/5 min had the highest number of positively correlated genes (clpC, cdnL, yitF/Tn1546, and spoVAD). Whole Genome Sequencing of four strains revealed genes related to sporulation, structure formation, initiation and regulation, stress response, and DNA repair in vegetative cells. The findings of this study indicate that these mesophilic aerobic spore-forming bacteria may adopt several strategies to persist through the process and reach the final product. As the inactivation of these microorganisms during egg processing is challenging, preventing raw materials contamination and their establishment in processing premises must be reinforced.


Assuntos
Bacillus , Esporos Bacterianos , Esporos Bacterianos/genética , Bactérias , Cognição , Gema de Ovo
2.
Microb Cell Fact ; 23(1): 119, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659027

RESUMO

BACKGROUND: Clostridium spp. has demonstrated therapeutic potential in cancer treatment through intravenous or intratumoral administration. This approach has expanded to include non-pathogenic clostridia for the treatment of various diseases, underscoring the innovative concept of oral-spore vaccination using clostridia. Recent advancements in the field of synthetic biology have significantly enhanced the development of Clostridium-based bio-therapeutics. These advancements are particularly notable in the areas of efficient protein overexpression and secretion, which are crucial for the feasibility of oral vaccination strategies. Here, we present two examples of genetically engineered Clostridium candidates: one as an oral cancer vaccine and the other as an antiviral oral vaccine against SARS-CoV-2. RESULTS: Using five validated promoters and a signal peptide derived from Clostridium sporogenes, a series of full-length NY-ESO-1/CTAG1, a promising cancer vaccine candidate, expression vectors were constructed and transformed into C. sporogenes and Clostridium butyricum. Western blotting analysis confirmed efficient expression and secretion of NY-ESO-1 in clostridia, with specific promoters leading to enhanced detection signals. Additionally, the fusion of a reported bacterial adjuvant to NY-ESO-1 for improved immune recognition led to the cloning difficulties in E. coli. The use of an AUU start codon successfully mitigated potential toxicity issues in E. coli, enabling the secretion of recombinant proteins in C. sporogenes and C. butyricum. We further demonstrate the successful replacement of PyrE loci with high-expression cassettes carrying NY-ESO-1 and adjuvant-fused NY-ESO-1, achieving plasmid-free clostridia capable of secreting the antigens. Lastly, the study successfully extends its multiplex genetic manipulations to engineer clostridia for the secretion of SARS-CoV-2-related Spike_S1 antigens. CONCLUSIONS: This study successfully demonstrated that C. butyricum and C. sporogenes can produce the two recombinant antigen proteins (NY-ESO-1 and SARS-CoV-2-related Spike_S1 antigens) through genetic manipulations, utilizing the AUU start codon. This approach overcomes challenges in cloning difficult proteins in E. coli. These findings underscore the feasibility of harnessing commensal clostridia for antigen protein secretion, emphasizing the applicability of non-canonical translation initiation across diverse species with broad implications for medical or industrial biotechnology.


Assuntos
Clostridium butyricum , Clostridium , Proteínas Recombinantes , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Clostridium/genética , Clostridium/metabolismo , Humanos , Proteínas Recombinantes/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/genética , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Administração Oral , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/imunologia , Vacinação , COVID-19/prevenção & controle , Engenharia Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões Promotoras Genéticas
3.
Bioresour Technol ; 398: 130534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452953

RESUMO

Bacillus licheniformis is widely utilized in disease prevention and environmental remediation. Spore quantity is a critical factor in determining the quality of microbiological agents containing vegetative cells. To improve the understanding of Bacillus licheniformis BF-002 strain culture, a hybrid model integrating traditional dynamic modeling and recurrent neural network was developed. This model enabled the optimization of carbon/nitrogen source feeding rates, pH, temperature and agitation speed using genetic algorithms. Carbon and nitrogen source consumption in the optimal duplicate batches showed no significant difference compared to the control batch. However, the spore quantity in the broth increased by 16.2% and 35.2% in the respective duplicate batches. Overall, the hybrid model outperformed the traditional dynamic model in accurately tracking the cultivation dynamics of Bacillus licheniformis, leading to increased spore production when used for optimizing cultivation conditions.


Assuntos
Bacillus licheniformis , Bacillus licheniformis/genética , Esporos Bacterianos/genética , Temperatura , Carbono , Nitrogênio
4.
Vet Med Sci ; 10(3): e1410, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501344

RESUMO

BACKGROUND: Probiotic strains have the potential to modulate immune responses, reduce intestinal inflammation, normalize intestinal mucosal function and decrease allergic reactions. OBJECTIVE: This study aimed to investigate the effect of oral probiotic supplements containing Bacillus subtilis and Bacillus coagulans spores on clinical symptoms, haematological factors and immune responses to allergic contact dermatitis in dogs induced by dinitrochlorobenzene (DNCB). METHODS: DNCB was injected subcutaneously into the scapular region of 20 healthy adult dogs of both sexes, divided into four groups, to induce experimental allergic contact dermatitis. Dogs in Group 1 received food without probiotics or medication. Oral prednisolone was administered to Group 2 for 30 days at a dosage of 0.25 mg/kg every other day. The dogs in Group 3 were treated with a combination of oral prednisolone and probiotics. The dogs in Group 4 were fed daily with a mixture of 109 B. subtilis and B. coagulans bacteria for 30 days. The immune system responses and related gene expression were analysed in the treated animals. RESULTS: The administration of probiotics for 30 days resulted in a reduction in clinical symptoms and duration of wound repair. The probiotics treatment also significantly increased the serum bactericidal effects against Staphylococcus aureus and Escherichia coli. It enhanced both the classic and alternative activity of the complement, as well as lysozyme activity. Additionally, the probiotics led to higher total immunoglobulin levels and significant reductions in anti-trypsin and C-reactive protein levels. Furthermore, the expression of IgE, induction of interferon-gamma and IL-4 genes were also reduced. CONCLUSIONS: According to the results, B. subtilis and B. coagulans can be further investigated as a viable alternative to corticosteroids in treating allergic contact dermatitis in dogs.


Assuntos
Bacillus coagulans , Dermatite Alérgica de Contato , Doenças do Cão , Masculino , Feminino , Cães , Animais , Bacillus subtilis/genética , Dinitroclorobenzeno , Esporos Bacterianos/genética , Dermatite Alérgica de Contato/terapia , Dermatite Alérgica de Contato/veterinária , Prednisolona , Doenças do Cão/induzido quimicamente , Doenças do Cão/terapia
5.
J Microorg Control ; 29(1): 9-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508764

RESUMO

Mechanical bead disruption is an efficient DNA extraction method from spore cells for subsequent quantification of the spore population by quantitative polymerase chain reaction(qPCR). In this study, to validate spore DNA localization and extraction efficiencies, the fractionated DNA included the total DNA(tDNA)extracted from spore cells and intracellular(iDNA)and extracellular DNA(eDNA)extracted from fractionated spores through chemical decoating and alkaline lysis buffers, each followed by bead disruption. Furthermore, alkaline lysis buffer-treated spore cells were intensively washed three and five times after each centrifugation to determine how the amount of DNA is affected by repeated centrifugation. This process was achieved through fractionated spore pellet and suspension treatments with propidium monoazide xx(PMAxx)before mechanical bead disruption. Three fractionated and extracted DNAs were assessed with qPCR. The amount of eDNA was higher than that of iDNA, and closer to tDNA levels in the qPCR assay. These results indicted the following: 1)amount of eDNA was more than iDNA and responsible for majority of amount of tDNA through the combination method involving alkaline lysis buffer and bead disruption, 2)lysis buffer partially eliminated the eDNA fragments through multiple washing steps, but it was not largely independent of the number of times centrifugation was performed.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Reação em Cadeia da Polimerase em Tempo Real , Bacillus subtilis/genética , Esporos Bacterianos/genética , DNA Bacteriano/genética , DNA
6.
Proc Natl Acad Sci U S A ; 121(13): e2400584121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502707

RESUMO

When faced with starvation, the bacterium Bacillus subtilis transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σF is exclusively activated in the smaller daughter cell. Compartment-specific activation of σF requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σF in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that the core components of the redeployed cell division machinery drive the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacillus subtilis/metabolismo , Ativação Transcricional , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Divisão Celular/genética , Fator sigma/genética , Fator sigma/metabolismo
7.
Food Microbiol ; 120: 104490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431333

RESUMO

Sporeforming bacteria are a concern in some food raw materials, such as cocoa powder. Samples (n = 618) were collected on two farms and at several stages during cocoa powder manufacture in three commercial processing lines to determine the impact of each stage on bacterial spore populations. Mesophilic aerobic, mesophilic anaerobic, thermophilic aerobic, and Bacillus cereus spore populations were enumerated in all the samples. Genetic diversity in B. cereus strains (n = 110) isolated from the samples was examined by M13 sequence-based PCR typing, partial sequencing of the panC gene, and the presence/absence of ces and cspA genes. The counts of different groups of sporeforming bacteria varied amongst farms and processing lines. For example, the counts of mesophilic aerobic spore-forming (MAS) populations of cocoa bean fermentation were lower than 1 log spore/g in Farm 1 but higher than 4 log spore/g in Farm 2. B. cereus isolated from cocoa powder was also recovered from cocoa beans, nibs, and samples after roasting, refining, and pressing, which indicated that B. cereus spores persist throughout cocoa processing. Phylogenetic group IV was the most frequent (73%), along with processing. Strains from phylogenetic group III (14 %) did not show the ces gene's presence.


Assuntos
Bacillus cereus , Chocolate , Bacillus cereus/genética , Filogenia , Anaerobiose , Esporos Bacterianos/genética , Microbiologia de Alimentos , Contagem de Colônia Microbiana
8.
J Bacteriol ; 206(3): e0042823, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38353530

RESUMO

In Streptomyces, multiple paralogs of SsgA-like proteins (SALPs) are involved in spore formation from aerial hyphae. However, the functions of SALPs have not yet been elucidated in other actinobacterial genera. Here, we report the primary function of an SsgB ortholog (AmSsgB) in Actinoplanes missouriensis, which develops terminal sporangia on the substrate mycelia via short sporangiophores. Importantly, AmSsgB is the sole SALP in A. missouriensis. The transcription of AmssgB was upregulated during sporangium formation, consistent with our previous findings that AmssgB is a member of the AmBldD regulon. The AmssgB null mutant (ΔAmssgB) strain formed non-globose irregular structures on the substrate mycelium. Transmission electron microscopy revealed that the irregular structures contained abnormally septate hypha-like cells, without an intrasporangial matrix. These phenotypic changes were restored by complementation with AmssgB. Additionally, analysis of the heterologous expression of seven SALP-encoding genes from Streptomyces coelicolor A3(2) (ssgA-G) in the ΔAmssgB strain revealed that only ssgB could compensate for AmSsgB deficiency. This indicated that SsgB of S. coelicolor A3(2) and AmSsgB have comparable functions in A. missouriensis. In contrast to the ΔAmssgB strain, the ftsZ-disrupted strain showed a severe growth defect and produced small sporangium-like structures that swelled to some extent. These findings indicate that AmSsgB is crucial for the early stages of sporangium formation, not for spore septum formation in the late stages. We propose that AmSsgB is involved in sporangium formation by promoting the expansion of the "presporangium" structures formed on the tips of the substrate hyphae. IMPORTANCE: SsgB has been proposed as an archetypical SsgA-like protein with an evolutionarily conserved function in the morphological development of spore-forming actinomycetes. SsgB in Streptomyces coelicolor A3(2) is involved in spore septum formation. However, it is unclear whether this is the primary function of SsgBs in actinobacteria. This study demonstrated that the SsgB ortholog (AmSsgB) in Actinoplanes missouriensis is essential for sporangium expansion, which does not seem to be related to spore septum formation. However, the heterologous expression of ssgB from S. coelicolor A3(2) restored morphological abnormalities in the ΔAmssgB mutant. We propose that the primary function of SsgB is to initiate sporulation in differentiating cells (e.g., aerial hyphae in Streptomyces and "presporangium" cells in A. missouriensis) although its molecular mechanism remains unknown.


Assuntos
Actinobacteria , Actinoplanes , Streptomyces coelicolor , Streptomyces , Esporângios/metabolismo , Streptomyces/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Actinobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
9.
Protein Expr Purif ; 218: 106448, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38373510

RESUMO

Cellobiose dehydrogenase (CDH) plays a crucial role in lignocellulose degradation and bioelectrochemical industries, making it highly in demand. However, the production and purification of CDH through fungal heterologous expression methods is time-consuming, costly, and challenging. In this study, we successfully displayed Pycnoporus sanguineus CDH (psCDH) on the surface of Bacillus subtilis spores for the first time. Enzymatic characterization revealed that spore surface display enhanced the tolerance of psCDH to high temperature (80 °C) and low pH levels (3.5) compared to free psCDH. Furthermore, we found that glycerol, lactic acid, and malic acid promoted the activity of immobilized spore-displayed psCDH; glycerol has a more significant stimulating effect, increasing the activity from 16.86 ± 1.27 U/mL to 46.26 ± 3.25 U/mL. After four reuse cycles, the psCDH immobilized with spores retained 48% of its initial activity, demonstrating a substantial recovery rate. In conclusion, the spore display system, relying on cotG, enables the expression and immobilization of CDH while enhancing its resistance to adverse conditions. This system demonstrates efficient enzyme recovery and reuse. This approach provides a novel method and strategy for the immobilization and stability enhancement of CDH.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Desidrogenases de Carboidrato , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicerol/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/química
10.
Genes Dev ; 38(1-2): 1-3, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38316519

RESUMO

Germination is the process by which spores emerge from dormancy. Although spores can remain dormant for decades, the study of germination is an active field of research. In this issue of Genes & Development, Gao and colleagues (pp. 31-45) address a perplexing question: How can a dormant spore initiate germination in response to environmental cues? Three distinct complexes are involved: GerA, a germinant-gated ion channel; 5AF/FigP, a second ion channel required for amplification; and SpoVA, a channel for dipicolinic acid (DPA). DPA release is followed by rehydration of the spore core, thus allowing the resumption of metabolic activity.


Assuntos
Proteínas de Bactérias , Esporos Bacterianos , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Esporos/metabolismo , Canais Iônicos/metabolismo , Bacillus subtilis/metabolismo
11.
Nat Commun ; 15(1): 1376, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355696

RESUMO

Bacterial spores owe their incredible resistance capacities to molecular structures that protect the cell content from external aggressions. Among the determinants of resistance are the quaternary structure of the chromosome and an extracellular shell made of proteinaceous layers (the coat), the assembly of which remains poorly understood. Here, in situ cryo-electron tomography on lamellae generated by cryo-focused ion beam micromachining provides insights into the ultrastructural organization of Bacillus subtilis sporangia. The reconstructed tomograms reveal that early during sporulation, the chromosome in the forespore adopts a toroidal structure harboring 5.5-nm thick fibers. At the same stage, coat proteins at the surface of the forespore form a stack of amorphous or structured layers with distinct electron density, dimensions and organization. By analyzing mutant strains using cryo-electron tomography and transmission electron microscopy on resin sections, we distinguish seven nascent coat regions with different molecular properties, and propose a model for the contribution of coat morphogenetic proteins.


Assuntos
Tomografia com Microscopia Eletrônica , Esporos Bacterianos , Esporos Bacterianos/genética , Proteínas de Bactérias/metabolismo , Microscopia Eletrônica de Transmissão , Bacillus subtilis/metabolismo
12.
Genes Dev ; 38(1-2): 31-45, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38242633

RESUMO

Bacterial spores can remain dormant for decades yet rapidly germinate and resume growth in response to nutrients. GerA family receptors that sense and respond to these signals have recently been shown to oligomerize into nutrient-gated ion channels. Ion release initiates exit from dormancy. Here, we report that a distinct ion channel, composed of SpoVAF (5AF) and its newly discovered partner protein, YqhR (FigP), amplifies the response. At high germinant concentrations, 5AF/FigP accelerate germination; at low concentrations, this complex becomes critical for exit from dormancy. 5AF is homologous to the channel-forming subunit of GerA family receptors and is predicted to oligomerize around a central pore. 5AF mutations predicted to widen the channel cause constitutive germination during spore formation and membrane depolarization in vegetative cells. Narrow-channel mutants are impaired in germination. A screen for suppressors of a constitutively germinating 5AF mutant identified FigP as an essential cofactor of 5AF activity. We demonstrate that 5AF and FigP interact and colocalize with GerA family receptors in spores. Finally, we show that 5AF/FigP accelerate germination in B. subtilis spores that have nutrient receptors from another species. Our data support a model in which nutrient-triggered ion release by GerA family receptors activates 5AF/FigP ion release, amplifying the response to germinant signals.


Assuntos
Bacillus subtilis , Proteínas de Membrana , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Membrana/genética , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo
13.
J Proteome Res ; 23(2): 596-608, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38190553

RESUMO

Reliable and comprehensive multi-omics analysis is essential for researchers to understand and explore complex biological systems more completely. Bacillus subtilis (B. subtilis) is a model organism for Gram-positive spore-forming bacteria, and in-depth insight into the physiology and molecular basis of spore formation and germination in this organism requires advanced multilayer molecular data sets generated from the same sample. In this study, we evaluated two monophasic methods for polar and nonpolar compound extraction (acetonitrile/methanol/water; isopropanol/water, and 60% ethanol) and two biphasic methods (chloroform/methanol/water, and methyl tert-butyl ether/methanol/water) on coefficients of variation of analytes, identified metabolite composition, and the quality of proteomics profiles. The 60% EtOH protocol proved to be the easiest in sample processing and was more amenable to automation. Collectively, we annotated 505 and 484 metabolites and identified 1665 and 1562 proteins in B. subtilis vegetative cells and spores, respectively. We also show differences between vegetative cells and spores from a multi-omics perspective and demonstrate that an integrative multi-omics analysis can be implemented from one sample using the 60% EtOH protocol. The results obtained by the 60% EtOH protocol provide comprehensive insight into differences in the metabolic and protein makeup of B. subtilis vegetative cells and spores.


Assuntos
Bacillus subtilis , Proteômica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Metanol , Água/metabolismo , Etanol/metabolismo
14.
J Invertebr Pathol ; 203: 108066, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246321

RESUMO

Ameson portunus, the recently discovered causative agent of "toothpaste disease" of pond-cultured swimming crabs in China has caused enormous economic losses in aquaculture. Understanding the process of spore germination is helpful to elucidate the molecular mechanism of its invasion of host cells. Here, we obtained mature and germinating spores by isolation and purification and in vitro stimulation, respectively. Then, non-germinated and germinated spores were subjected to the comparative transcriptomic analysis to disclose differential molecular responses of these two stages. The highest germination rate, i.e., 71.45 %, was achieved in 0.01 mol/L KOH germination solution. There were 9,609 significantly differentially expressed genes (DEGs), with 685 up-regulated and 8,924 down-regulated DEGs. The up-regulated genes were significantly enriched in ribosome pathway, and the down-regulated genes were significantly enriched in various metabolic pathways, including carbohydrate metabolism, amino acid metabolism and other metabolism. The results suggested that spores require various carbohydrates and amino acids as energy to support their life activities during germination and synthesize large amounts of ribosomal proteins to provide sites for DNA replication, transcription, translation and protein synthesis of the spores of A. portunus within the host cells. Functional genes related to spore germination, such as protein phosphatase CheZ and aquaporin, were also analyzed. The analysis of transcriptome data and identification of functional genes will help to understand the process of spore germination and invasion.


Assuntos
Microsporídios , Transcriptoma , Animais , Esporos , Microsporídios/genética , Perfilação da Expressão Gênica , Esporos Bacterianos/genética
15.
J Gen Appl Microbiol ; 69(4): 215-228, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37380492

RESUMO

When Bacillus subtilis cells face environmental deterioration, such as exhaustion of nutrients and an increase in cell density, they form spores. It is known that phosphorylation of Spo0A and activation of σH are key events at the initiation of sporulation. However, the initiation of sporulation is an extremely complicated process, and the relationship between these two events remains to be elucidated. To determine the minimum requirements for triggering sporulation initiation, we attempted to induce cell sporulation at the log phase, regardless of nutrients and cell density. In rich media such as Luria-Bertani (LB) medium, the cells of B. subtilis do not sporulate efficiently, possibly because of excess nutrition. When the amount of xylose in the LB medium was limited, σH -dependent transcription of the strain, in which sigA was under the control of the xylose-inducible promoter, was induced, and the frequency of sporulation was elevated according to the decreased level of σA. We also employed a fusion of sad67, which codes for an active form of Spo0A, and the IPTG-inducible promoter. The combination of lowered σA expression and activated Spo0A allowed the cells in the log phase to stop growing and rush into spore development. This observation of enforced initiation of sporulation in the mutant strain was detected even in the presence of the wild-type strain, suggesting that only intracellular events initiate and fulfill spore development regardless of extracellular conditions. Under natural sporulation conditions, the amount of σA did not change drastically throughout growth. Mechanisms that sequester σA from the core RNA polymerase and help σH to become active exist, but this has not yet been elucidated.


Assuntos
Bacillus subtilis , Fatores de Transcrição , Bacillus subtilis/genética , Fatores de Transcrição/genética , Fator sigma/genética , Fator sigma/metabolismo , Xilose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/genética , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica
16.
World J Microbiol Biotechnol ; 40(1): 35, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057620

RESUMO

Feather, horn, hoof, and other keratin waste are protein-rich but limited by natural keratinase synthesis, activity, pH, and temperature stability. It is challenging to realize its large-scale application in industries. Bacillus subtilis spores are a safe, efficient, and highly resistant immobilized carrier, which can improve target proteins' resistance. In this research, KERQ7, the keratinase gene of Bacillus tequilensis strain Q7, was fused to the Bacillus subtilis genes coding for the coat proteins CotG and CotB, respectively, and displayed on the surface of B. subtilis spores. Compared with the free KERQ7, the immobilized KERQ7 showed a greater pH tolerance and heat resistance on the spore surface. The activity of CotG-KERQ7 is 1.25 times that of CotB-KERQ7, and CotG-KERQ7 is more stable. When the flexible linker peptide L3 was used to connect CotG and KERQ7, the activity was increased to 131.2 ± 3.4%, and the residual enzyme activity was still 62.5 ± 2.2% after being kept at 60 ℃ for 4 h. These findings indicate that the flexible linker and CotG were more effective for the spore surface display of keratinase to improve stress resistance and promote its wide application in feed, tanning, washing, and other industries.


Assuntos
Proteínas de Bactérias , Esporos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo
17.
Mol Cell ; 83(22): 4158-4173.e7, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37949068

RESUMO

Sporulating bacteria can retreat into long-lasting dormant spores that preserve the capacity to germinate when propitious. However, how the revival transcriptional program is memorized for years remains elusive. We revealed that in dormant spores, core RNA polymerase (RNAP) resides in a central chromosomal domain, where it remains bound to a subset of intergenic promoter regions. These regions regulate genes encoding for most essential cellular functions, such as rRNAs and tRNAs. Upon awakening, RNAP recruits key transcriptional components, including sigma factor, and progresses to express the adjacent downstream genes. Mutants devoid of spore DNA-compacting proteins exhibit scattered RNAP localization and subsequently disordered firing of gene expression during germination. Accordingly, we propose that the spore chromosome is structured to preserve the transcriptional program by halting RNAP, prepared to execute transcription at the auspicious time. Such a mechanism may sustain long-term transcriptional programs in diverse organisms displaying a quiescent life form.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Regiões Promotoras Genéticas , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo
18.
Protein Pept Lett ; 30(11): 959-965, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946356

RESUMO

BACKGROUND: LinB, as a Haloalkane dehalogenase, has good catalytic activity for many highly toxic and recalcitrant compounds, and can realize the elimination of chemical weapons HD in a green non-toxic mode. OBJECTIVES: In order to display Haloalkane dehalogenase LinB on the surface of Bacillus subtilis spore. METHODS: We have constituted the B. subtilis spore surface display system of halogenated alkanes dehalogenase LinB by gene recombination. RESULTS: Data revealed that LinB can display on spore surface successfully. The hydrolyzing HD analogue 2-chloroethyl ethylsulfide (2-CEES) activity of displayed LinB spores was 4.30±0.09 U/mL, and its specific activity was 0.78±0.03U/mg. Meanwhile, LinB spores showed a stronger stress resistance activity on 2-CEES than free LinB. This study obtained B. subtilis spores of LinB (phingobium japonicum UT26) with enzyme activity that was not reported before. CONCLUSION: Spore surface display technology uses resistance spore as the carrier to guarantee LinB activity, enhances its stability, and reduces the production cost, thus expanding the range of its application.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Bacillus subtilis/genética , Esporos Bacterianos/genética , Hidrolases/genética , Hidrolases/química , Proteínas de Bactérias/genética
19.
PLoS One ; 18(11): e0289183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37963142

RESUMO

Clostridium novyi has demonstrated selective efficacy against solid tumors largely due to the microenvironment contained within dense tumor cores. The core of a solid tumor is typically hypoxic, acidic, and necrotic-impeding the penetration of current therapeutics. C. novyi is attracted to the tumor microenvironment and once there, can both lyse and proliferate while simultaneously re-activating the suppressed immune system. C. novyi systemic toxicity is easily mitigated by knocking out the phage DNA plasmid encoded alpha toxin resulting in C. novyi-NT; but, after intravenous injection spores are quickly cleared by phagocytosis before accomplishing significant tumor localization. C. novyi-NT could be designed to accomplish intravenous delivery with the potential to target all solid tumors and their metastases in a single dose. This study characterizes CRISPR/Cas9 modified C. novyi-NT to insert the gene for RGD, a tumor targeting peptide, expressed within the promoter region of a spore coat protein. Expression of the RGD peptide on the outer spore coat of C. novyi-NT indicates an increased capacity for tumor localization of C. novyi upon intravenous introduction based on the natural binding of RGD with the αvß3 integrin commonly overexpressed on the epithelial tissue surrounding a tumor, and lead to immune stimulation.


Assuntos
Clostridium botulinum , Neoplasias Pancreáticas , Humanos , Esporos Bacterianos/genética , Clostridium/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Oligopeptídeos/metabolismo , Microambiente Tumoral
20.
J Bacteriol ; 205(10): e0016723, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37730539

RESUMO

A new study by M. J. Flores, K. Duricy, S. Choudhary, M. Laue, and D. L. Popham (J Bacteriol 205:e00142-23, 2023, https://doi.org/10.1128/jb.00142-23) demonstrates a role for the YlaJ/YhcN family of lipoproteins in the immobilization of the spore's inner membrane. In the absence of these lipoproteins, membrane fluidity increases and membrane-associated proteins like the GerA receptor complexes are more exposed to inimical conditions. The role of these proteins in stabilizing the Bacillus spore inner membrane is now being explored.


Assuntos
Bacillus subtilis , Bacillus , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Fluidez de Membrana , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Lipoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...